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a b s t r a c t

Clast-based vorticity gauges utilize orientations of grains assumed to have behaved as isolated rigid
particles suspended in a flowing viscous matrix. A fundamental assumption behind use of the method is
that sufficient strain has accumulated for high aspect ratio grains to rotate into positions approaching
their stable sink orientation, and that clasts below a critical aspect ratio may be observed in any
orientation relative to the flow plane. We constructed a numerical model to explore the effect of variable
finite strain on development of the orientation distribution of a large population of rigid clasts embedded
in a viscous medium for end-member pure and simple shear and for several distinct general shear flows.
Our model predicts the technique will tend to produce vorticity overestimates for lower vorticity flows
for a wide range of finite strain. The model also indicates that clast populations in moderate to high
vortical flows tend to develop shape preferred orientations that closely resemble those expected for
flows of lower vorticity. We conclude that clast-based methods are not effective for extracting detailed
kinematic information from a mylonite deformed in a flow with arbitrary boundary conditions. In fact, it
appears that most general shear flows continued long enough to develop moderateehigh finite strains
will tend to produce a clast orientation distribution that will yield a visual estimate of the critical aspect
ratio that suggests approximately equal contributions of pure and simple shear components.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Since the introduction of kinematic vorticity into the geological
literature (McKenzie, 1979; Means et al., 1980), and the develop-
ment of methods for extracting these data from naturally deformed
rocks (e.g., Passchier, 1986, 1987; Vissers, 1989; Wallis, 1992; Wallis
et al., 1993; Simpson and De Paor, 1993), structural studies of
orogenic belts have increasingly focused on determining the
boundary conditions of flow during ductile deformation in high-
strain zones. Results of these investigations have repeatedly
shown crustal-scale shear zones from a wide array of tectonic
settings involved a departure from ideal simple shear (e.g.,
Passchier, 1987; Vissers, 1989; Wallis et al., 1993; Xypolias and
Doutsos, 2000; Law et al., 2004; Jessup et al., 2006, 2007; Bailey
et al., 2007; Johnson et al., 2009). The implications of these
results are significant for several reasons. Consider a shallowly
dipping mylonite zone, a common feature in orogenic hinterlands,
deforming by simultaneous pure and simple shearing [here we
follow previous authors (e.g., Ramberg, 1975) in using the suffix-ing
to emphasize terms related to the deformation process]. The pure
shearing component of an isochoric, plane strain, sub-simple
þ1 5402313386.
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shearing deformation causes thinning perpendicular to the zone
boundaries. Strain compatibility arguments require that material
must simultaneously stretch parallel to the shear zone boundary.
Material in such a narrowing-lengthening shear zone (Simpson and
De Paor, 1993; Tikoff and Fossen, 1999) is likely directed toward the
synorogenic topographic surface, causing a material flux from
lower to higher crustal levels (i.e., from orogenic core to foreland).
Purely geometric arguments indicate the magnitude and rate of
extrusion of material increase rapidly from the core to foreland of
the orogen forcing an increase in strain rate at higher structural
levels (Law, 2010). Such coupling of middle and shallow crustal
levels may help drive deformation in the orogenic foreland. This
simple example illustrates that reliable methods of determining
kinematic parameters from high-strain zones are critically impor-
tant for meaningful interpretation of structural evolution within
such ductile deformation zones.

Several vorticity gauges, including: (1) deformed vein sets
(Talbot, 1970; Hutton,1970; Passchier, 1986); (2) clast-based gauges
(Passchier, 1987; Simpson and De Paor, 1993;Wallis et al., 1993); (3)
quartz petrofabric and strain ratio (RXZ/b) (Wallis, 1992, 1995); (4)
oblique dynamically recrystallized grain shape foliation (Wallis,
1995); RXZ/d method of (Xypolias (2009, 2010); (5) angle between
macroscopic foliation and shear zone boundary (RXZ/q) (Tikoff and
Fossen, 1995); and (6) flanking structures (Grasemann and Stüwe,
2001) have been applied to natural rocks. Clast-based vorticity
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gauges are the most commonly applied to natural samples due to:
(1) their relative simplicity and rapid application; and (2) many of
the assumptions required for the technique to be valid are appar-
ently met (see Passchier, 1987). Early theoretical models published
by Masuda et al. (1995) indicated that clast-based techniques may
be useful to broadly discriminate between coaxial and non-coaxial
flow. However, evenwith the increased use during the last 15 years
(e.g., Passchier, 1987; Vissers, 1989; Wallis et al., 1993; Simpson and
De Paor, 1997; Holcombe and Little, 2001; Xypolias and
Koukouvelas, 2001; Bailey and Eyster, 2003; Law et al., 2004;
Carosi et al., 2006; Jessup et al., 2006, 2007; Xypolias and
Kokkalas, 2006; Bailey et al., 2007; Marques et al., 2007; Thigpen
et al., 2010), no advance has been made on understanding the
role finite strain plays on the evolution of clast orientation distri-
butions for different flow types.

Finite strain magnitude is critically important in all vorticity
estimation methods as it is either an explicit parameter (e.g., RXZ/q,
RXZ/b, and RXZ/d methods), or for the clast-based method in
particular, it is tacitly assumed that sufficient strain has accumu-
lated for high aspect ratio grains to have rotated into their stable
positions. Because finite strain is a fundamental parameter for
determining the porphyroclast orientation distribution produced
during deformation, we view the lack of knowledge of strain state
as a limit on the usefulness of vorticity estimates made solely from
clast-based techniques, and argue that multiple techniques should
be used to constrain deformation kinematics.

In this paper we first review the mathematical theory neces-
sary to describe pure, simple, and sub-simple shearing flow and
use this theoretical framework to model a large population of
rigid elliptical objects in viscous flows of variable kinematic
vorticity and at a wide range of finite strains. Our primary interest
lies in discovering if there exists a single value of finite strain
necessary to produce a well-organized orientation distribution for
different flow types. To this end we applied the governing
equations (and therefore assumptions and limitations) derived in
the seminal paper by Ghosh and Ramberg (1976). Some surprising
behavior is predicted at moderate to high kinematic vorticity and
high finite strains. Implications of these results are discussed in
a geological context.
2. Mathematical framework

2.1. Description of flow and progressive deformation

The velocity field about a point in a deforming continuum is
described by the velocity gradient tensor, L,

v ¼ Lx (1)

where v is a velocity vector, or the time derivative of position vector
x (i.e., v¼ dx/dt). The associated velocity gradient equations
become (Means et al., 1980):

vi ¼ Lijxj (2)

where vi are the velocity components at position xj at an instant in
time, and

Lij ¼
vvi
vxj

¼
�
L11 L12
L21 L22

�

(see Malvern, 1969, p. 146) are the spatial velocity gradients for
a two-dimensional flow (see Fig. 1). If the velocity gradient tensor
components Lij are constant the flow is homogeneous (Means et al.,
1980). For isochoric plane strain monoclinic flow with simulta-
neous pure and simple shearing, L may be written as
L ¼
�
_3x _g
0 _3

�
(3)
y

where _3x is the pure shearing strain rate and _g is the simple
shearing strain rate, here taken perpendicular and parallel to the
abscissa, respectively. Setting _3y ¼ �_3x forces the deforming
material to be incompressible. The eigenvectors, xi, of L give the
orientations of the flow apophyses (Ramberg, 1975; Passchier,
1988).

The velocity gradient tensor, L, may be decomposed into the
symmetric stretching tensor, _S, and skew-symmetric vorticity
tensor, W (Malvern, 1969, p. 147; Bobyarchick, 1986)

L ¼ _SþW (4)

where

_S ¼

2
64 _3x

1
2
_g

1
2
_g _3y

3
75 (5)

and

W ¼

2
64 0

1
2
_g

�1
2
_g 0

3
75: (6)

The eigenvectors and eigenvalues of _S provide information on
the orientation andmagnitude of the instantaneous stretching axes
(ISAi) and instantaneous stretching rates ð_siÞ of the flow, respec-
tively. The vorticity tensor, W, has components of angular velocity
and describes the rotation rate of elements in the deforming
material.

The kinematic vorticity number, Wk, is a useful way of quanti-
fying the instantaneous non-coaxiality of the flow at a point in
space and an instant in time, and has a unique value for any distinct
flow. By definition, Wk is an instantaneous quantity, but for the
steady flows considered here the vorticity number remains
constant during progressive deformation. The quantity sr, defined
as the ratio of pure to simple shearing strain rate, sr ¼ _3x= _g (Ghosh
and Ramberg, 1976), is also a measure of the degree of non-
coaxiality of the flow and may be expressed as a function of the
kinematic vorticity number by the relation (Ghosh, 1987, Eq. (9))

sr ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
W2

k

� 1

s
: (7)

Conversely, the kinematic vorticity may be calculated from
knowledge of the instantaneous pure and simple shearing strain
rates by the relation

Wk ¼ cos
�
tan�1

�
2
_3x
_g

��
(8)

or more simply

Wk ¼ cosðaÞ (9)

where a is the acute angle between the eigenvectors (xi) of L (for
derivation see Bobyarchick, 1986). By choosing appropriate values
for sr orWkwe can form a velocity gradient tensor, L, to produce the
velocity field of a deformation of any vorticity number of interest.

From (8) it is clear that identical Wk values result from any
combination of _3x and _g that yield the same sr value. Thus, any
choice of _3x and _g that yield the same ratio give rise to identical
velocity fields; only the time required to accumulate a finite strain
state will vary. Note from (7) that sr increases without bound as



Fig. 1. Steady flows considered in this paper. (a) Mohr circle for given numerical L (_3� u space). Note that a constant value of unity is used as simple shearing strain rate ð _gÞ for simple shear and all general shear flows. Eigenvectors (xi)
of L, instantaneous stretching axes (ISAi), and angle (a) between eigenvectors in real space indicated on Mohr construction. Percent simple shear and Wk number also indicated for each flow. (b) Velocity field in real space for associated
L. Each arrow points in the direction of the velocity vector at the spatial point coincident with vector tail, and is scaled relative to velocity magnitude. (c) Representative particle paths for associated L and velocity field for each flow.
Flow apophyses (labeled by coincident eigenvector) and ISAi indicated. Arrows superimposed on curves indicate temporal evolution of particle positions. Thin curves represent hyperbolic particle paths of material points and thick
curves represent straight-line particle paths directly toward or away from origin parallel to flow eigenvectors.
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Wk approaches zero. Inspection of (8) and (9) reveals that Wk is
a nonlinear function of sr or a. Wk ranges from 0 (a¼ 90�) for pure
shearing to 1 (a¼ 0�) for simple shearing (Fig. 2). Flows with
Wk> 1, where the rotation component is greater than that for strict
simple shear, are also possible but are not considered here.

The position gradient tensor, D, relates the position of a particle
in the deformed state, x0, to its position in the undeformed state, x:

x0 ¼ Dx: (10)

Provost et al. (2004) have shown that a relationship between L and
D exists in the form

D ¼ exp½LDt� (11)

where Dt¼ t� t0 is the time elapsed since the onset of deformation
(or since a previously deformed state). It is therefore possible to use
this relationship to determine the position of a particle at any time t
for a given flow. If we let deformation begin at t0¼ 0 then
Fig. 2. Variation of percent simple shear and sr ¼ _3x= _g with kinematic vorticity
number, Wk. Note both quantities sr and percent simple shear are moderately to
strongly nonlinear for different ranges of Wk. Percent simple shear rapidly increases as
Wk approaches unity. Note also the quantity sr increases without bound as pure
shearing end-member is approached.
D ¼ exp½Lt� ¼
2
4 exp�_3xt� 1

sr
sinh

�
_3xt
�

0 exp
�
_3yt
�
3
5 (12)

(cf. Ramberg, 1975, Eq. (38); see also Bobyarchick, 1986). It is
therefore possible to determine particle paths for any L and any
choice of kinematic vorticity number.

The finite strain state is also simply related to D (and therefore
L). The tensor, F (Finger tensor of Tikoff and Fossen, 1993) contains
a complete description of the finite strain accumulated to time t for
a given flow. F may be obtained from D by forming

F ¼ DDT (13)

(Malvern, 1969, p. 174) where DT is the matrix transpose of D. The
eigenvalues of F give the squares of the semi-axes of the finite strain
ellipse and the eigenvectors give their orientations (Tikoff and Fossen,
1993). Thus, by simply choosing appropriate instantaneous strain
rates for a particular kinematic vorticity number of interest we may
calculate the velocity field and any particle path. We may also deter-
mine the finite matrix strain parameters at any time during the flow.
3. Orientation of rigid elliptical objects embedded in a steady
viscous flow

3.1. Rotation rate of elliptical clasts

We have chosen to use the angle (q) between the clast long axis
andflowplane in our analysis to reflect a reference frame commonly
used in the kinematics literature (cf. Kanagawa,1996). Herewe take
the angle as positive if the clast is leaning in the direction of the
applied simple shearing component; a dextral shear couple is
considered positive (Fig. 3). Clasts rotating counterclockwise in this
frame give rise to a positive rotation rate. To accomplish this change
of reference frame we substituted the angle q¼ 90� f into the
independent variable f in Ghosh and Ramberg’s Eqs. (1) and (2).

Upon substitution, the rotation rate for a clast in simple shear
becomes

_qg ¼ � _g
R2cos2ð90� fÞ þ sin2ð90� fÞ

R2 þ 1

¼ � _g
R2sin2ðqÞ þ cos2ðqÞ

R2 þ 1
: (14)

The rotation rate for a clast in pure shear flow becomes
Fig. 3. Kinematic reference frame used in this paper. The angle (q) between clast long
axis and extensional flow apophysis (i.e., flow or shear plane) measured as shown;
counterclockwise rotation considered positive. Clast aspect ratio (R) obtained by
forming the ratio of long to short semi-axis lengths, R¼ a/b. The angle f was used in
the work by Ghosh and Ramberg (1976). Note q¼ 90� f.



Fig. 4. Orientation of selected individual rigid clasts suspended in a Newtonian matrix
during progressive deformation. Dark gray boxes show initially square matrix element
deformed to strain ratios of RXZ¼ 2, 5, 10, and 20. Passive circular markers deformed
into finite strain ellipses indicated by lighter gray screen at each deformation stage.
Abscissa and ordinate scales equal. Shown below strained matrix elements are
orientations of rigid clasts (no pattern) of aspect ratio R¼ 1.5, 2, 3, and 6 embedded in
the matrix at the given RXZ values (all clasts had þ45 degrees initial orientation).
Dashed lines indicate trace of clast semi-axes after last deformation increment. Arrows
indicate sense and approximate amount of clast rotation. (a) Pure shear. (b) Wk¼ 0.38
(25% simple shear). (c) Wk¼ 0.71 (50% simple shear). (d) Wk¼ 0.92 (75% simple shear).
(e) Simple shear. Note rapidly increasing shear zone-parallel stretch for flows with
higher pure shearing component. Rotation amounts of suspended clasts generally
decrease with increasing R for a given flow, while the finite rotation angle increases for
constant low aspect ratio clasts for flows of increasing Wk (this trend reverses for
higher aspect ratio clasts). See text for discussion.
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_q3 ¼ �_3 x
R2 � 1
R2 þ 1

sin½2ð90� fÞ�

¼ �_3x
R2 � 1
R2 þ 1

sinð2qÞ:
(15)

Addition of the instantaneous clast rotation rates in pure and
simple shear gives the expression for the instantaneous rotation
rate of a clast in a general shear flow

_q ¼ �_3x
R2 � 1
R2 þ 1

sinð2qÞ � _g
R2sin2ðqÞ þ cos2ðqÞ

R2 þ 1

which, after minor manipulation becomes

_q ¼ � _g
h
A cos2ðqÞ þ B sinð2qÞ þ C sin2ðqÞ

i
(16)

where

A ¼ 1
R2 þ 1

; B ¼ sr
R2 � 1
R2 þ 1

; C ¼ R2

R2 þ 1
:

Note the similarity of Eq. (16) to Eq. (4a) of Ghosh and Ramberg
(1976).

3.2. Final clast orientation

The relationship between the initial and final angle of a clast
suspended in the flow is obtained by integrating the rotation rate
Eqs. (14)e(16). The boundary conditions in our analysis are: (1) g
(or 3x)¼ 0 and q¼ q0 when t¼ 0; and (2) g (or 3x)¼ _gt (or _3xt) and
q¼ q when t¼ t (see also Kanagawa, 1996). Thus, the simple shear
component at time t is given by

g ¼
Zt¼ t

t¼0

_gdt ¼ _gt:

Similarly, the value of finite pure shear strain at time t is

3x ¼
Zt¼ t

t¼0

_3xdt ¼ _3xt

(see also Masuda et al., 1995). Alternatively, using the continuum
mechanics notation

g ¼ L12t

and

3x ¼ L11t

where Lijt is a component of the velocity gradient tensor multiplied
by the temporal duration of deformation. Once the flow type and
finite strain to be modeled have been chosen, parameters from the
matrix strain may be input into the finite rotation equations given
below to determine the orientation of a clast in the flow at any time
t (Fig. 4).

3.2.1. Simple shear flow
We may rewrite Eq. (14) and integrate both sides between the

boundaries discussed above to obtain

� _gt ¼
Zq
q0

R2 þ 1

R2sin2ðqÞ þ cos2ðqÞ
dq: (17)
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Upon integration and solving for the final orientation q, we
obtain

q ¼ tan�1

"
1
R
tan

(
tan�1ðR tan q0Þ � _gt

R2

R2 þ 1

)#
(18)

where q0 is the initial orientation of the long axis of the elliptical
inclusion.

3.2.2. Pure shear flow
Similarly, wemay rewrite Eq. (15) and integrate both sides, such

that

�_3t ¼ R2 þ 1
R2 � 1

Zq
q0

dq
sinð2qÞ: (19)

Upon integration and solving for the final orientation q, we
obtain

q ¼ tan�1

"
tanðq0Þ$exp

 
� 2_3t

R2 � 1
R2 þ 1

!#
: (20)

3.2.3. General shear flow
Finally, we may rewrite Eq. (16) and integrate both sides, such

that

� _gt ¼
Zq
q0

dq

A cos2ðqÞ þ B sinð2qÞ þ C sin2ðqÞ
(21)

(cf. Ghosh and Ramberg, 1976, Eq. (10)). The integral on the right
hand side of (21) has three types of solution depending onwhether
B2> AC, B2< AC or B2¼ AC. The solutions to these integrals may be
found in any book of standard mathematical tables. Upon integra-
tion, the solutions for q for each case are (see also Ghosh and
Ramberg, 1976):

1. B2> AC:

q ¼ tan�1

2
64P
	
Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � AC

p 

� Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � AC

p

Cð1� PÞ

3
75 (22)

where

P ¼ C tanðq0Þ þ B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � AC

p

C tanðq0Þ þ Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � AC

p ,exp
h
� 2 _gt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � AC

p i

2. B2< AC:

q ¼ tan�1

2
664
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AC � B2

p

C
�tan

(
tan�1

 
Ctanðq0Þ þ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AC � B2
p

!

� _gt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AC � B2

p )
� B
C

3
775 (23)
3. B2¼ AC:

q ¼ tan�1
�
1
C

�
C tanðq0Þ þ B

1þ _gtðC tanðq0Þ þ BÞ � B
��

: (24)

4. Review of inclusion and passive marker re-orientation in
a steady flow

The behavior of individual elliptical and passive line
elements in a flowing matrix is critical to understanding the
behavior of the larger populations of non-interacting elliptical
inclusions that we will discuss throughout the remainder of this
paper. Here we briefly review basic properties of the behavior of
elements embedded in selected steady flows. Because our
model uses the governing equations of Ghosh and Ramberg
(1976) the assumptions built into their formulation apply here
as well. Namely, we assume: (1) clasts are rigid, elliptical, and
are embedded in a linear viscous (i.e., Newtonian) matrix; (2)
one symmetry axis of the clast is parallel to the vorticity vector;
(3) the flow is steady, with a simultaneous combination of pure
and simple shearing; and (4) perfect coupling of the clast and
matrix.
4.1. Rotation rate of rigid inclusions

In this section we present plots of rate of change of orientation
ð _qÞ divided by strain rate (_3x or _g, as appropriate) vs. orientation (q)
of clast long axis. These plots may be thought of as a normalized
rotation rate vs. orientation in the flow. The fundamental behavior
of rigid particles suspended in a flowing viscous matrix that forms
the basis of clast-based vorticity gauges is depicted in these plots.
Therefore, considerable attention is devoted to unique aspects of
the behavior of clasts in simple shear, pure shear, and mixed flow
type.

4.1.1. Simple shear flow
Patterns of rotation rate in a simple shear flow are by far the

simplest (Fig. 5a). All inclusions rotate synthetic to the imposed
shear direction with the exception of a passive line element
parallel to the shear plane, which has zero angular velocity. A
spherical inclusion rotates at half the applied shear strain rate.
Line elements and large aspect ratio (R) grains have lower
angular velocities within �45 degrees of the flow plane, and
higher angular velocities at any other orientation. Rotation rates
are a maximum for an inclusion of any aspect ratio when it is at
high angles to the flow plane, and minimum when parallel. Note
that all elliptical or linear elements embedded in the matrix
have identical angular velocities when they are at exactly �45
degrees to the flow plane (i.e., when they are parallel to the
ISA). This is a general feature of suspended clasts in any flow
type.

4.1.2. Pure shear flow
Rotation rates of elliptical objects suspended in a pure shear

flow are more complex than those in simple shear flow (Fig. 5b).
Spherical clasts do not rotate, whereas positive and negative rota-
tion rates (i.e., counterclockwise and clockwise rotation, respec-
tively) are predicted for all elongate clasts, depending on
orientation. Maximum absolute values of rotation rates are ob-
tained for any non-spherical clast at �45 degrees to the flattening
plane. Grains of higher R always have faster rotation rates (either
positive or negative) than grains of lower R in the same orientation.



Fig. 5. Normalized rotation rate vs. clast orientation plots for elements embedded in
a viscous flow. (a) Simple shear. (b) Pure shear. (c) Wk¼ 0.38 (25% simple shear). (d)
Wk¼ 0.71 (50% simple shear). (e) Wk¼ 0.92 (75% simple shear). Thin curves represent
clasts with aspect ratios ranging from 1 to 6 in increments of 0.5 (i.e., R¼ 1, 1.5, 2,., 6);
labels omitted for clarity. Thick solid curve represents a passive line marker, thick
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Inclusions and linear elements parallel and perpendicular to the
flattening plane (parallel to ISA) have zero angular velocity.

4.1.3. General shear flow
Clasts embedded in a matrix undergoing general shear share

attributes with those in both pure and simple shear flow; however,
the most significant feature is the existence of a particular aspect
ratio whose rotation rate vanishes in a flow of a given vorticity
(Fig. 5cee). This aspect ratio is termed the critical aspect ratio, Rcrit.
Clasts with R< Rcrit rotate synthetic to the imposed simple shearing
component only, whereas those with R> Rcrit have fields of positive
and negative rotation rate. Each clast with R> Rcrit has one stable
and one metastable orientation in the flow. A clast initially in
a metastable orientation, after any perturbation, will rotate toward
its stable orientation (i.e., the stable orientation at a lower angle to
the flow plane). The value of Rcrit increases with increasing vorticity
number until, in the limit, Rcrit¼N for simple shear flow. Because
Rcrit is unique for a given general shear flow, the kinematic vorticity
may theoretically be calculated if this aspect ratio can be deter-
mined (Fig. 6).

4.2. Field of back-rotation

The existence of both negative and positive angular velocities
for flows with 0<Wk< 1 discussed above indicate that some clasts
will rotate against the applied shear direction during sub-simple
shearing. In fact, Fig. 5cee clearly indicates the range of orienta-
tions for which a clast may back-rotate is a function of aspect ratio
and kinematic vorticity. Clasts with R only slightly greater than Rcrit
have a more restricted range of orientations where back-rotation is
possible than clasts with R[ Rcrit. In the limit, passive line
elements define the widest possible orientation range for back-
rotation in a given flow. The orientation where curves represent-
ing passive line markers intersect the zero angular velocity contour
are by definition the orientation of the flow apophyses (i.e.,
eigenvectors, xi, of the velocity gradient tensor, L). These orienta-
tions separate fields of forward and backward rotation for a given
flow. It can also be seen that the single stable orientation for clasts
with R¼ Rcrit bisects the acute angle between the eigenvectors of L.
The size of the field of back-rotation increases rapidly with
increasing aspect ratio (Fig. 5cee).

5. Kinematic model

5.1. Initial and boundary conditions

In an attempt to model as realistic a clast population as possible,
we combined observations from 76 mylonitic samples (total of
14,959 measured porphyroclasts) from a variety of lithologies and
tectonic settings (Fig. 7aec). Our model utilizes a large population
of clasts (n¼ 500) with aspect ratios satisfying the requirement
1� R� 7, in the same proportions as our combined dataset (i.e., the
histogram of model clasts is identical to that in Fig. 7d, but the total
data sum to n¼ 500). Initial orientations (q0) for our clasts ranged
from�90 toþ90 degrees andwere derived using a randomnumber
generator so every possible pair of R and q0 values from the range
given above is well-represented in the initial population (Fig. 8).
dashed curve (cee) represents clast with R¼ Rcrit. Passive line markers and clasts
(regardless of aspect ratio) have identical angular velocity when parallel to ISA of the
flow. Clasts with aspect ratios R> 5 approximate behavior of passive line elements. ISAi

and xi indicated by dashed and dotted lines, respectively. Note clasts with Rz Rcrit have
rotation rates that are such a small fraction of the applied shear strain rate when in
orientations near the flow plane that they may be mistaken for clasts with a stable
orientation. Compare Figs. 9e11. See text for discussion.



Fig. 7. Histograms showing frequency of clast aspect ratios measured in natural mylonites. (
Central Thrust zone, Sutlej Valley, NW India (unpublished data). (b) Results from examina
System, Everest Massif (Jessup et al., 2006). (c) Results from examination of 12 mylonitic sa
2010). (d) Results of combined datasets. Note grains with R� 3 dominate the natural popula
w3 and 6.5% of the population for a given dataset, and w5% of the total data).

Fig. 6. Relationship between critical aspect ratio (Rcrit), and kinematic vorticity
number (Wk). Rcrit increases only from 1 to 2 for an increase in Wk of 0e0.6 (i.e., an
increase from 0 to 40% simple shearing component). The ability to accurately distin-
guish flows with Rcrit in this range may be difficult for natural mylonites. Note also Rcrit
increases rapidly and without bound for kinematic vorticity values above Wkz 0.9.
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The same initial population was used to calculate the orientation
distribution at each finite strain state for each flow.

We modeled flows with Wk values of 0 (pure shear), 0.38 (25%
simple shear), 0.71 (50% simple shear), 0.92 (75% simple shear), and
1 (100% simple shear) to investigate the effects of increasing simple
shearing component on clast orientation distributions. The orien-
tation distributions shown here were calculated for matrix strain
ratios (RXZ) of 2, 5, 10, 20, 50, 100, 200, and 500. Animations
depicting the evolution of clast orientation distributions during
progressive deformation for all five model flows presented in this
paper are provided as an electronic supplement.

5.2. Results

It is apparent from our model results that moderate to high
finite strains are required for clasts with R� Rcrit to rotate into their
stable orientation (Fig. 9). However, due to the different response of
clasts of variable aspect ratio to the imposed boundary conditions,
not all clasts above Rcrit reach the flow plane after an identical
matrix strain, so a well-developed clast orientation distribution is
not developed for each flowafter the same duration of deformation.
In other words, flows of different vorticity require different
amounts of finite strain to produce well-organized porphyroclast
orientation distribution patterns that will yield reliable results from
the rigid grain technique.

The final orientation, or finite angle of rotation, of a clast is
a complex function of aspect ratio, initial orientation, flow vorticity,
and finite strain. Fig. 4 provides insight into the behavior of a small
subset of grains within the larger population used to calculate clast
a) Results from examination of 21 mylonitic samples (3648 total clasts) from the Main
tion of 43 mylonitic samples (8324 total clasts) from the South Tibetan Detachment
mples (2987 total clasts) from the Moine Thrust, Stack of Glencoul, NW Scotland (Law,
tions, but clasts with R� 4 are much less common (here they represent between only



Fig. 8. Initial population. Clast aspect ratios (R) range from 1 to 7, and initial angles (q0)
range from �90 to þ90 degrees. Clast proportions of total population are as detailed
for combined natural datasets (Fig. 7d). Pairs (R, q0) chosen using a random number
generator to represent a homogeneous distribution of clast initial orientations.
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orientation distributions. An initial square matrix element with
embedded passive circular marker is shown in the initial configu-
ration and after matrix strains of RXZ¼ 2, 5, 10, and 20 for each
modeled flow. Progressive deformation may be monitored by
change in angles or calculated directly by measuring the passive
strain ellipse. Shown below the graphical matrix strains in Fig. 4 are
rigid elliptical clasts of variable aspect ratio (R¼ 1.5, 2, 3, and 6), all
initially atþ45 degrees to the flow plane, and their orientation after
each matrix strain increment. The figure clearly shows the
maximum angle of finite rotation is w90 degrees for a grain with
R¼ 1.5 and a matrix strain of RXZ¼ 20 in a simple shear flow. All
other grains in pure and general shear rotate significantly less after
identical matrix strains. This is the case if the clast aspect ratio is
well above, below, or near Rcrit for the flow. Also evident from the
figure is a decrease in rotation angle with increasing strain when
clast long axes approach parallelism with the flow plane. Most
clasts in these examples rotate no more than w20 degrees during
progressive matrix strains of 5e20. This is an important point that
has implications for clast orientation distributions at high finite
strain.
5.3. Clast orientation distributions at high finite strain

An interesting phenomenon occurs in the models for high Wk

flows at moderate to high finite strains (e.g., Wk¼ 0.92 flow at
RXZ> 10; Fig. 9). Clasts with R< Rcrit rotate into sub-parallelism
with the flow plane and remain near this orientation until very
high strains accumulate. Similar results are obtained for all flows,
but the phenomenon becomes increasingly apparent for higher Wk

flows simply because a similar percentage of Rcrit occupies a larger
R range.

For the case of the Wk¼ 0.92 flow, clasts with R� 4.4 (within
approximately 10% of Rcrit¼ 4.9) reach sub-parallelism with the
extensional flow apophysis and remain near this position regard-
less of their initial orientation (Fig. 10). These clasts do not become
significantly re-oriented until matrix strains of RXZz 275,000
ð _gtz25Þ, and even then nearly all clasts in this range are predicted
to lie within 20 degrees of the flow plane. Thus, for geologically
realistic and greater matrix strain ratios, clasts within this range are
indistinguishable from grains with R� Rcrit; they are effectively
stable. If we now examine clasts further separated from Rcrit, say
withinw22 to 10% (i.e., 3.8� R� 4.3), we see the behavior is similar
but less pronounced (Fig. 11). Here the lower aspect ratio clasts
rotate to greater (negative) angles to the flow apophysis by the time
we reach the maximum strains modeled, on the order of RXZ¼ 500.
Therefore, by the time moderate strains are reached in this flow,
nearly all clasts within w22% of Rcrit have rotated to within w10
degrees of the flow plane and will remain close to this orientation
until large finite strains accumulate.

The reason for this behavior is clearly seen in the rotation rate
vs. orientation curves (Fig. 5cee). The normalized rotation rate of
clasts with R near Rcrit is such a small fraction of the applied shear
strain rate, particularly in orientations near the extensional flow
apophysis, that very high shear strains are necessary for clasts to
rotate away from the flow plane (cf. Marques and Coelho, 2003).

6. Discussion

6.1. Model predictions

The numerical model presented here of evolving clast orienta-
tion distributions for steady flows of variable vorticity provides
insight into the first-order behavior of natural systems during
progressive deformation. The model allows direct comparison of
the effects of progressive deformation for a steady flow and of
increasing simple shearing component for viscous flows at constant
strain states. Our results confirm previous conclusions (Masuda
et al., 1995; Bailey et al., 2007; Mulchrone, 2007) that clast-based
kinematic vorticity gauges may aid in discriminating pure and
simple shear-dominated flows. We also found that large clast
populations with a large range of clast aspect ratios are required for
a reliable estimate of Rcrit. This point has received little attention in
the recent literature and will be discussed further below.

6.1.1. Pure shear-dominated flows
Our results indicate rather high strains are required to identify

lowWk flows due to the relatively slow rotation of clasts with R� 2,
particularly when they have initial orientations at moderate to high
negative angles to the flow plane. Even in these strongly pure
shear-dominated flows, relatively high strains (e.g., 1 � _gt � 2) are
required to rotate clasts above Rcrit into their stable orientations
subparallel to the flow plane (see e.g., Ghosh and Ramberg, 1976,
their Figs. 9e13). For the modeled pure shear flow, elongate clasts
tend to reach the flattening (foliation) plane at the lowest RXZ
values, but finite strains on the order of>20:1 appear necessary for
the majority of clasts to reach their stable orientation. Similarly,
visual estimates of Rcrit for the Wk¼ 0.38 flow tend to produce an
overestimate of the applied vorticity for all modeled strain states
(Fig. 9). Visually estimated Rcrit for this flow appears to lie between
2 and 3 for much of the deformation history, even for strain ratios
approaching 500:1. This may be one contributing factor to the
Wk¼ 0.65e0.75 results obtained from samples interpreted to have
experienced pure shear-dominated flow (e.g., Bailey et al., 2007).

6.1.2. Simple shear-dominated flows
Clast orientation distributions closely resembling those ex-

pected for lower Wk flows are predicted for high Wk flows, even at
low finite strain (Fig. 9). Here clasts of all aspect ratios rotate slowly
in orientations subparallel to the flow plane so high strains must
accumulate to rotate these grains from this orientation. Greater
strains are needed for higher aspect ratio clasts, even though they
are unstable in the flow (Figs. 9e11).

The visually estimated Rcrit of the Wk¼ 0.92 flow model at high
strain (RXZ> 20) is w3 to 3.75, corresponding to a Wk of 0.8e0.87
(Fig. 9). This is a significant underestimation of the simple shearing
component of flow (16e8%). The lower bound on visual estimates
of theWk¼ 0.71 flowmay also yield underestimates on the applied
vorticity of the same order (w10%) at high strain. Notice that this
range of visually estimated Wk values is in agreement with results
reported from many studies, even if higher Wk estimates were



Fig. 9. Kinematic model results for five steady flows (Wk¼0, 0.38, 0.71, 0.92, and 1) at eight different finite strain ratios (RXZ¼ 2, 5, 10, 20, 50, 100, 200, and 500). Constant Wk values aligned in columns; rows contain results from
different Wk values calculated at identical matrix strain ratios. Dashed vertical lines indicate theoretical Rcrit for given flow. Finite matrix strain, RXZ, theoretical critical aspect ratio, Rcrit, and strain component, 3 ¼ _3xt or g ¼ _gt, used to
produce orientation distribution indicated.
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Fig. 10. Orientation (q) of clast long axis (cf. Fig. 3) vs. simple shear component ð _gtÞ for a flow ofWk¼ 0.92. Aspect ratios of R¼ 4.4, 4.5,.,4.9 shown (i.e., clasts withinw10% of Rcrit).
Length of dashes in pattern increase with increasing R; some labels omitted for clarity. Initial clast orientations of (a) þ90 degrees, (b) þ45 degrees, (c) 0 degrees, and
(d) �45degrees.
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obtained for the same samples using different methods.We suspect
that pseudostable behavior of clasts with R< Rcrit, particularly in
simple shear-dominated flows, may be another potential cause of
the ubiquitous 0.65e0.75 Wk estimates from natural rocks.
Underestimations of the simple shearing component of the
magnitude estimated here, propagated through calculations of
shear zone-parallel stretch, may yield substantial errors that
impact interpretations relating the role of general shear flow to
deformation-driven exhumation of plastically deformed rocks.
6.2. Application to naturally deformed rocks

Clearly, a critically important factor regarding the reliability of
the rigid grain technique is the existence of a population of grains
with R> Rcrit. For example, samples must have a population of
grains with R> 3 for effective discrimination of flows withWk> 0.8
(Fig. 6). Results from our own analyses, complimented by a brief
examination of published analyses (e.g., Xypolias and Koukouvelas,
2001; Law et al., 2004; Jessup et al., 2006; Jessup et al., 2007; Bailey
et al., 2007; Johnson et al., 2009; Thigpen et al., 2010), unfortu-
nately reveal that many natural rocks lack a significant population
of suitable grains to discriminate high vorticity flows. For example,
examination of the 76 mylonitic rocks from which we derived the
aspect ratio distribution for our initial population, revealed that
approximately 5% (779 of 14 959 clasts) have aspect ratios greater
than R¼ 4 (Fig. 7). This value is consistent with other published
studies. Such a small fraction of high aspect ratio grains in naturally
deformed rocks indicates that flows with more than w60 to 70%
simple shearing component are not generally identifiable by the
rigid grain method.
We suggest that a lack of high aspect ratio grains may be yet
another contributing factor to the overwhelming 0.65e0.75 Wk

estimates for naturally deformed rocks obtained from clast-based
techniques. Our experience suggests that for natural samples,
clasts with R< 3 are abundant while grains with R> 4 are much
more uncommon. Uncritical use of such naturally limited datasets
will tend to produce underestimates of Wk for natural mylonites
(assuming they experience moderate to high vortical flows). We
suspect that it is unrealistic to expect to identify flows with
Wk> 0.85, and discriminating flows with this high of a simple
shearing component is likely only possible under ideal
circumstances.

6.2.1. Example
We present a brief example illustrating some limitations of the

rigid grain technique by examining inmore detail samples from the
Rongbuk valley, Everest massif, originally presented by Law et al.
(2004). We are primarily interested in the influence variable
matrix strains and variable vorticity values have on the theoretical
orientation distribution of porphyroclasts. We will examine the
impact of finite strain estimates that vary over two orders of
magnitude (RXZw 2e250). Both the rigid grain and RXZ/b tech-
niques have been applied to several of the same samples (see Law
et al., 2004, Table 1, samples ET08 and ET12eET14). Rigid grain
analyses applied to these rocks resulted in Wm estimates in the
range of 0.67e0.85 (mean of 0.76). Here we use the notationWm to
indicate the measured vorticity was not likely an instantaneous
quantity. Application of the RXZ/b method to the same rocks,
however, yielded Wm estimates in the range 0.78e0.94 (mean of
0.87), providing an upper bound on flow vorticity during myloni-
tization. We will show that this vorticity range is indistinguishable



Fig. 11. Orientation (q) of clast long axis (cf. Fig. 3) vs. simple shear component ð _gtÞ for a flow ofWk¼ 0.92. Aspect ratios of R¼ 3.8, 3.9,., 4.3 shown (i.e., clasts withinw22 to 10% of
Rcrit). Length of dashes in pattern increase with increasing R. Initial clast orientations of (a) þ90 degrees, (b) þ45 degrees, (c) 0 degrees, and (d) �45 degrees.

Fig. 12. Model simulations of our original initial clast population for Wk values of 0.76 (upper panel) and 0.87 (lower panel) at matrix strains of (a, b) 12:1, (c, d) 100:1, and (e, f)
250:1. Note that clast orientation distributions are strikingly similar at the same matrix strains for these differentWk values. Thus, theWk¼ 0.76 value obtained from measurements
of the natural mylonites is a likely lower bound on the true flow vorticity, while higher Wk values for these rocks are also possible.
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by the rigid grain method, and that large differences in kinematics
of simple shear-dominated flows are predicted to be difficult to
distinguish using rigid grain analysis.

Minimum strains for these rocks of RXZz 2e3 have been
inferred from aspect ratios of dynamically recrystallized quartz
aggregates surrounded by mica films (Law et al., 2004). At these
low matrix strains most grains above Rcrit have not rotated into
their stable orientations (cf. predictions for all flows at similar
strains in Fig. 9). It is not until matrix strains ofw10 to 12 that clast
populations resembling those observed begin to emerge from our
model (Fig. 12a and b). Interestingly, matrix strains of this magni-
tude are near the maximum compatible with constraints on angle
b determined from optically measured quartz c-axis fabrics on
reconnaissance samples published by Law et al. (2004). Even at
these moderate strain values, however, predictions for the
Wk¼ 0.76 flow suggest that the ‘true’ vorticity may be over-
estimated in at least some natural rocks. Perhaps more important
here than potential Wk underestimates is the similarity of the
orientation distributions predicted for both Wk¼ 0.76 and
Wk¼ 0.87 flows for a matrix strain ratio of 12:1 (Fig. 12a and b). At
RXZ values of 100e250, maximum estimates obtained by assuming
a penetrative vertical telescoping of isotherms below the South
Tibetan Detachment, clasts with R� Rcrit have rotated into positions
approaching their stable orientation. However, even at these high
strains the visual estimates of Rcrit have not changed significantly
and both flows modeled are predicted to produce virtually indis-
tinguishable results (Fig. 12cef).

The important observations here are: (1) for simple shear-
dominated flows such as this, finite strain ratios greater than
w10:1 appear necessary for clasts with R� Rcrit to closely approach
their stable orientation. At lower matrix strains the rigid grain
technique may overestimate the applied vorticity; and (2) similar
clast orientation distributions are predicted for significantly
different flows at matrix strains higher than RXZz 10. Thus, it
appears that for simple shear-dominated flows e such as described
for the Rongbuk valley e that by the time clasts rotate to near their
stable position for moderate vorticity flows (e.g., Wkz 0.7 or so),
strikingly similar orientation distributions are predicted for
significantly higher vorticity flows (e.g., Wk� 0.85). There does not
seem to be a way, solely by rigid grain analysis, to identify any flow
of significantly greater vorticity than Wk¼ 0.65e0.75, even though
grains with R� Rcrit exist in the rocks.

This example underscores the importance of applying multiple
techniques to single appropriate samples, and of obtaining inde-
pendent finite strain estimates for samples selected for rigid grain
analysis to determine likely upper and lower bounds on flow
vorticity. By combining different vorticity estimation techniques
with strain data the two vorticity values estimated for the Rongbuk
section are seen to be identical within the limitations of the rigid
grain method, rather than incompatible.

7. Conclusions

Our numerical model employing Ghosh and Ramberg’s (1976)
analytic solutions for the re-orientation of ellipsoidal clasts sus-
pended in a flowing Newtonian matrix indicate: (1) moderate to
high matrix strains are required for clasts with R� Rcrit to rotate
into their stable orientationse even for flows of lowWk. We cannot
state a particular strain ratio that must be attained by a deformed
rock to ensure successful application of the technique, however,
because different flow types require different matrix strains for
clasts with R� Rcrit to approach their stable orientation; (2) in
simple shear-dominated flows, some clasts with R< Rcrit rotate into
sub-parallelism with the flow plane and remain near this orienta-
tion until large matrix strains accumulate. The exact amount of
strain required to re-orient these psuedostable clasts is a function
of their aspect ratio and flow vorticity; and (3) although the rigid
grain technique may potentially discriminate pure and simple
shear-dominated strain paths, the restricted R range of natural clast
populations and pseudostable behavior of clasts that exist in many
rocks, limit the usefulness of the method for extracting high-
quality, meaningful results for many flows, particularly when
used as the sole vorticity estimation technique.

We suggest the main limitations regarding application of the
rigid grain technique to natural rocks are: (1) a significant pop-
ulation of grains with R> Rcrit must exist in the sample for it to be
useful; (2) high matrix strains must be reached, even in low Wk

flows, for clasts to reach their stable orientation. This may cause
overestimations of the applied vorticity for many low strain rocks;
and (3) at highmatrix strains, clast populations in moderate to high
Wk flows tend to develop shape preferred orientations that closely
resemble those expected for lower Wk flows. The first point is
critical because there is no way to know, a priori, the kinematic
parameters of an ancient flow e indeed, these are the data sought.
If the clast population used to extract these parameters is inade-
quate the results will be biased. The second and third points may
provide some insight into the ubiquitous 0.65e0.75 Wk values
obtained from natural samples.

In many cases where the quartz c-axis fabric and rigid grain
methods have been applied to the same sample the results are
markedly different. Results obtained from the quartz c-axis fabric
method often yield Wk� 0.9, whereas rigid grain results are
significantly lower (e.g., Law et al., 2004; Sullivan, 2008; Johnson
et al., 2009; Xypolias, 2009; Xypolias, 2010). If results from the
quartz c-axis fabric method are indeed representative of much of
the ductile flow history for a given rock volume, then this
discrepancy may be due to: (1) the behavior of higher aspect ratio
grains in highWk flows at high strain; (2) a lack of grains above Rcrit,
or possibly a combination of both. The discrepancy may be ampli-
fied if other contributing factors such as a non-Newtonian rheology
(ten Grotenhuis et al., 2002) or imperfect clastematrix coupling is
also a factor (Johnson et al., 2009).

In light of the model presented here it appears that Ghosh and
Ramberg’s (1976) equations that govern clast rotational behavior
in a viscous medium e upon which the rigid grain technique is
founded e predict that the method is not equally effective for all
flows, particularly at high finite strain. In fact, it appears that most
general shear flows continued long enough to develop moder-
ateehigh finite strain will tend to produce a clast orientation
distribution that will yield a visual estimate of the critical aspect
ratio that suggests approximately equal contributions of pure and
simple shear components.
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